q-Risk metric
metric_q_risk.Rd
Also referred to as:
\(\pi-risk\) (2)
\(p*-loss\) (3)
\(ρ-quantile loss R_{ρ}\) (4). It's a metric based on the quantile loss. Loss value for a single sample-timestep-quantile is computed as: $$QL(y_t, \hat{y}_t, q) = max(q(y_t - \hat{y}_t), (q - 1)(y_t - \hat{y}_t))$$ or equivalently as : $$QL(y_t, \hat{y}_t, q) = max(q(y_t - \hat{y}_t), 0) + max((1 - q)(\hat{y}_t - y_t), 0)$$ The final form of the metric looks as follows: $$q-Risk = \frac{2\Sigma_{y_t \in \Omega}\Sigma^{\tau_{max}}_{\tau=1}QL(y_t, \hat{y}(q, t - \tau, \tau), q)}{\Sigma_{y_t \in \Omega}\Sigma^{\tau_{max}}_{\tau=1}{|y_t|}}$$
References
B. Lim, S.O. Arik, N. Loeff, T. Pfiste, Temporal Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting(2020)
D. Salinas, V. Flunkert, J. Gasthaus, T. Januschowski, DeepAR: Probabilistic forecasting with autoregressive recurrent networks, International Journal of Forecasting(2019)
S. S. Rangapuram, et al., Deep state space models for time series forecasting, in: NIPS(2018)
S. Li, et al., Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting, in: NeurIPS(2019)