Each time series in the dataset can be assigned one of the following classes:
m5_demand_type(data)
The result of the m5_prepare
function.
A data.table
containing item ids (item_id
and store_id
),
ADI and CV2 scores (adi
and cv2
respectively) as well as the final
class chosen based on the aforementioned scores (demand_type
).
Smooth (ADI < 1.32 and CV² < 0.49).
Intermittent (ADI >= 1.32 and CV² < 0.49)
Erratic (ADI < 1.32 and CV² >= 0.49)
Lumpy (ADI >= 1.32 and CV² >= 0.49)
Syntetos A. A. and Boylan J. E., 2005, The accuracy of intermittent demand estimates. International Journal of Forecasting 21: 303–314 Forecast Error Measures: Intermittent Demand
if (FALSE) {
m5_download('data')
c(sales_train,
sales_test,
sell_prices,
calendar) %<-% m5_get_raw_evaluation('data')
m5_data <-
m5_prepare(sales_train, sales_test, calendar, sell_prices)
m5_demand <- m5_demand_type(m5_data)
}