data.frame
-like objectR/as-ts-dataset.R
as_ts_dataset.Rd
Create a torch dataset for time series data from a data.frame
-like object
as_ts_dataset(
data,
formula,
index = NULL,
key = NULL,
predictors = NULL,
outcomes = NULL,
categorical = NULL,
timesteps,
horizon = 1,
sample_frac = 1,
scale = TRUE,
jump = 1,
...
)
(data.frame
) An input data.frame object with.
For now only single data frames are handled with no categorical features.
(formula
) A formula describing, how to use the data
(character
) The index column name.
(character
) The key column name(s). Use only if formula was not specified.
(character
) Input variable names. Use only if formula was not specified.
(character
) Target variable names. Use only if formula was not specified.
(character
) Categorical features.
(integer
) The time series chunk length.
(integer
) Forecast horizon.
(numeric
) Sample a fraction of rows (default: 1, i.e.: all the rows).
(logical
or list
) Scale feature columns. Logical value or two-element list.
with values (mean, std)
If scale
is TRUE, only the input variables are scale and not the outcome ones.
library(rsample)
library(dplyr, warn.conflicts = FALSE)
suwalki_temp <-
weather_pl %>%
filter(station == "SWK")
# Splitting on training and test
data_split <- initial_time_split(suwalki_temp)
train_ds <-
training(data_split) %>%
as_ts_dataset(tmax_daily ~ date + tmax_daily + rr_type,
timesteps = 20, horizon = 1)
#> Categorical variables found (1): rr_type
train_ds[1]
#> Error in torch_int(): could not find function "torch_int"